
1

Developing Schemas for
XML Document Exchange

Using the
Resource Description Framework (RDF)

John McClure
jmcclure@hypergrove.com

Presentation to the Swiss Federal Chancellery, November 13, 2001

Introduction. One consequence of using the Extensible Markup Language (XML) technology is a new
focus on text documents exchanged between organizations and persons. Historically, software developers
focused on binary messages exchanged between applications executing on client and server computers.
Two key architectural questions occur: (1) what information within a document needs to be separately
‘tagged’ by XML elements, so it may be extracted and subsequently used; and (2) what are the optimal
formats for, and arrangements of, XML elements within the document. The answer to the first question is
represented by a document schema, indicating what is tagged within a document. The answer to the
second question – how to code document instances using XML elements – is partially determined by the
technology used to record a document’s schema.

Two XML dialects exist for representing document schema : (1) RDF Schema and (2) XML Schema. One
subject today is the difference between these dialects, both important Technical Recommendations from
the Worldwide Web Consortium (W3C), meaning that they have the greatest official sanction possible
from the W3C. The objective of this presentation is to help you to make an informed decision about the
technologies most suitable to your organizations and software applications; my own aim is to share with
you our standards’ architecture, which combines the two schema dialects in a manner that effectively
leverages their best properties.

Speaker. My name is John McClure, founder of Hypergrove Engineering, a firm whose goal is to create
software used during the formation and management of lease and purchase contracts. My own objective
has been to create open, public standards for legal information, ultimately becoming the architect for the
Data Consortium, a non-profit association within the commercial real estate sector in the United States. I
chair two workgroups within LegalXML, an association including courts, law enforcement, and legal
publishers. I chair LegalXML’s Contracts Workgroup and also, wit h Murk Muller, chair their Dictionary
Workgroup, where we are creating a dictionary complying with the Resource Description Framework.
My background is economics, which led me to the field of computer science. At IBM, I was a developer
of the OS/2 operating system’s desktop environment, and later the leader of a team that created an SGML
document editor. At MCI, I was responsible for application and data architectures, a position in which I
became an evangelist encouraging company-wide adoption of the Extensible Markup Language.

Links. http://www.w3.org, http://www.dataconsortium.org, http: //www.legalxml.org, http://www.hypergrove.com

2

Metadata Specification

YesYesConstraint Support

XML Schema DatatypesXML Schema DatatypesBasic Datatypes

Synonym Support

Inheritance Support

Basic Elements

Æ General Orientation

Popular Name

Characteristic

<sameClassAs>
<samePropertyAs>

Multiple Inheritance

<Class>
<Property>

Defines names for things
Defines object models

“Dictionary”,“Ontology”

RDF Schema

?

Single Inheritance

<Element>
<Attribute>

Defines XML elements
Defines a transport protocol

“Document Schema”

XML Schema

The objective of any schema is to define metadata in a manner useful to application software. Metadata
includes documents that are within the scope of the software, fields on the documents, and permissible
values for fields. RDF Schema (RDFS) and XML Schema (XMLS) are the XML dialects for metadata
specification the W3C recommends, although others do exist (ASN, DDL, DTD, Relax NG, XMI). RDFS
repositories are popularly called dictionaries or, more technically, semantic ontologies. XMLS grew from
Document Type Definitions (DTDs), and its repositories are accordingly called “document schema’.

The key distinction between the two dialects is that RDFS defines names for information elements
(using “Class” elements), while XMLS defines names for XML elements (uses “Element” elements).
This is important. Because RDFS defines types of program objects manipulated by software, and XMLS
defines a specific transport protocol for information read and written by software, RDFS dictionaries can
be applied to multiple transport protocols; XMLS schemas cannot. An RDFS dictionary is applicable to
an XML representation (acting like an XML Schema); an HTML/SVG/XFORMS representation; or even
a binary representation. XML Schema cannot do this.

In order for RDFS metadata to be functionally equivalent to XMLS metadata, one needs to look deeper.
Both provide familiar content models, constraint specifications; and the identical set of intrinsic data-
types (strings, numerics, dates, URLs, etc.). Like most object-oriented programming languages, RDFS
however does accommodate multiple inheritance, while XMLS does not. Further, RDFS does provide
synonym and antonym support, concepts foreign to XMLS. RDFS is as capable as XMLS performing the
basic functions of Document Type Definitions, the metadata facility they were each designed to replace –
instance datastream validation.

Finally, given that an organization’s metadata repository is expected to be a large volume of information,
the question must be asked: is it a good organizational investment to create and maintain two metadata
repositories? The short answer is yes, if the size of the XMLS repository is consciously small, placing the
majority of metadata within the RDFS repository. The longer answer involves recognizing the need to
accommodate datastream transformation and query requirements.

3

Instance Document Coding

Not addressedNoun – Verb – Noun Element Patterns

Meta-statements

XML Coding Styles

Persistent Identifiers
(assigning/referencing)

Resource/Object Typing

Runtime Support

Characteristic

Yes

Attributes = Elements

rdf:ID – for new resources
rdf:about – for new data
rdf:resource – references

Dynamic

Part of architecture

RDF Schema

Not addressed

Inflexible

Not addressed

Static

Not addressed

XML Schema

The Resource Description Framework provides more than just a metadata repository. Its architecture
envisions a runtime environment that interprets RDF datastreams as a series of statements composed of a
subject, a predicate, and an object (a tuple). RDF also accommodates meta-statements, that is, a statement
whose object is another statement (example: “John said to keep most metadata in an RDFS dictionary”).
The runtime facility therefore allows an application to “select” all subjects in a document, subject to the
values of associated predicates and objects, similar to relational database selections.

During database design and programming, problems occur when an entity has multiple types and the
underlying technology allows only a single type to be associated with the entity. In the RDF, this problem
is eliminated because multiple types can be associated with a single resource. The conventional approach
for indicating that something is of multiple types is to use boolean elements (flags); in the RDF however
the resource automatically assumes the attributes (or properties) associated with its types – thus elegantly
matching the realities that are being modeled (see example below).

RDF also includes a mechanism for indicating when an XML element represents the definition of a new
resource (use the rdf:ID attribute), or contains information that is about an existing resource (use the
rdf:about attribute). RDF also addresses references of an existing resource (use rdf:resource).

RDF allows multiple encodings to have identical meanings. For instance, the LawFirm element below
could be coded as <LawFirm dc:Title=‘Smith & Jones’/>. The RDF runtime establishes
the dc:Title information as an attribute (or property) of a LawFirm resource object, regardless of
whether it was coded as an XML attribute or as an XML element.

Example RDF Mark-up
<Witness rdf:ID='http://www.uscourts.gov/USA.FederalCourt.CourtCase.Witness#AB1234567890'>

<rdf:type rdf:resource=‘#Attorney’/>
<represents rdf:resource=‘http://www.uscourts.gov/USA.FederalCourt.CourtCase.Defendant#FOO1234890’/>

<employedBy>

<LawFirm rdf:about=‘http://www.dot.net/USA.Business#AB1234567890’>
<dc:Title>Smith & Jones</dc:Title>

</LawFirm>

</employedBy>
</Witness>

4

Strategy for a Standard
Fact: Most documents & forms are now coded in HTML and PDF
Fact: SVG is replacing PDF; XFORM is replacing HTML’s forms
Fact: XHTML, SVG, and XFORM are XML dialects

Recipe for a Revolutionary Standard
Require publishers to interchange non-presentation ‘documents’
Require publishers and all clients to buy/learn new tools/browsers
Require publishers to create redundant XML elements in datastreams

Recipe for an Evolutionary Standard
Minimize changes in current practices and current toolsets
Annotate HTML/SVG/XFORM elements: use their name attributes
Require no (or few) new elements to be added to current datastreams

The usual goal of vertical industry XML standard-making organizations is the exchange of documents
that are created within the vertical industry. A “document” is presentation materialthat, until now, has
been represented using HTML or Adobe’s PDF language, both non-conforming with XML and both
unquestionably in the process of being replaced by XML-compliant dialects: XHTML and XFORM are
replacing HTML, and the Scalable Vector Graphics (SVG) language is replacing PDF. The implication is
that all documents will soon be coded by publishers using XHTML, XFORM, and SVG.

Therefore, is it not ironic that standards-making consortia are creating non-presentation dialects of XML
that are to be used to interchange presentation material? By definition, consortia seem to be creating
standards for the exchange of databases, not documents, because the information is not in its final,
substantial, form. The implication is that publishers committed to exchange need to create both
presentation material and a database representing the document. That is unacceptable since the ultimate
impact of the standard is to be maximally disruptive to current business practices which are (becoming)
based on XHTML, SVG, and XFORM. The more disruption, the less likely the proposed standard will
take root in stakeholder organizations.

The HTML, SVG, and XFORM dialects of XML must be leveraged as the foundation for document
exchange. Fortunately, these three dialects already include the mechanics necessary for standards
organizations to do this – most of their elements include a name attribute in which publishers can place a
structured dotted name. This dotted-name is used to label the information represented by the element.

In other words, standards consortia must focus on establishing the structure of dotted-names, not on
establishing entirely new dialects of XML that are disjoint with respect to current business practices,
tools, and skills, and are disjoint with respect to the objects they are intended to represent, that is,
presentation documents.

5

Structured Dotted Names
Used in an HTML Datastream
<input type=‘text’ name=‘Witness.FirstName’ value=‘John’/>

Used in an XML Datastream
<Witness.FirstName>John</Witness.FirstName>

Converted to Nested XML Elements
<Witness>

<FirstName>John</FirstName>
</Witness>

Converted to an RDF Datastream
<Witness>

<isNamed>
<FirstName>John</FirstName>

</isNamed>
</Witness>

Used in ECMA Software
Witness.FirstName = ‘John”;

When used in an HTML datastream, a dotted-name is naturally used to label the value of the value
attribute on an <input> element. Note that when the HTML form is posted to an HTTP server, the
value of the name and value attributes are automatically extracted, giving the same result as if used in an
XML datastream (the second scenario). However, there is a drawback from using a dotted name as the
value of the name attribute in an HTML document. Dynamic HTML (Javascript) allows a seamless use
of the name attribute as part of a property-name, meaning that Javascript programs would not be able to
use this (somewhat odd) facility. If this is undesirable, then a namespace-qualified attribute could be used
instead. For instance, using the Data Consortium’s namespace, the attribute dcn:name would contain
‘Witness.FirstName’ while the name attribute would contain, for instance, “WitnessFirstName”.

It is syntactically valid for the name of an XML element to be a dotted-name. However, note that when
used as the name of an XML element, element nesting (see the third scenario) is eliminated – this has the
beneficial effect of rendering the XML datastream itself easier to humanly comprehend and debug. In
fact, little prevents adjacent XML elements which have no attribute values or text content from being
allowed, by default, to be arbitrarily combined using the dot operator – the nested element structure can
be easily inserted or removed mechanistically. Such pre-processing would be necessary in order to (a)
validate the datastream using a DTD, an XML Schema, or an RDF Schema; and (b) process or otherwise
transform the datastream using the Extensible Stylesheet Language (XSL-T).

In the next scenario, the dotted name is converted to an RDF representation. The predicate (“isNamed”)
is inserted between the nouns “Witness” and “FirstName” based upon metadata in the repository that
identifies the relationships between nouns. The dotted name “Witness.isNamed.FirstName” is equally
valid, however that name is potentially artificial and, if it were a publisher requirement, may encounter
resistance from stakeholders wanting a simple non-intrusive standard for information exchange.

The same dotted name can be used in an ECMA Script program (Javascript). The “FirstName” property-
slot of the “Witness” object is assigned a string value. Therefore, dotted names bring a consistency across
several technologies now associated with the Internet. To achieve this end, XML Schema – used to define
XML elements – is not appropriate. RDF Schema – used to define object classes and their properties – is
well-suited for the repositories containing operational metadata.

6

subClassOf

Data Consortium Taxonomy
DCN

Resource

Actor

Location

Product

Account

EntryDocument

Event

Property

Service Role

Topic

subClassOf

Business

Group

Institution

Organization

Person

Trust

ActorRole

QualifiedActor

Memo

Quantity

Time

QualifiedEntry

Name

FirstName

Witness

ThirdParty

Party

Base Classes
PersonalRole

Base Classes

Base Categories

Base Categories

RDF
Resource

The Data Consortium’s Dictionary contains a taxonomy for almost 8,000 terms related to the commercial
real estate industry in the United States, a portion of which is displayed by this diagram. A taxonomy in
this context is an arrangement of terms into super/subclass rela tionships. For instance, DCNResource is a
subclass of RDF’s Resource class, a class that represents a generic object in the Resource Description
Framework. A superclass could be called a “category” however it is more than just a container for other
terms – every object class has properties that can be assigned to it, and all properties assigned to a
superclass are inherited by its subclasses. One can also say subclasses are sub-types (thus the rdf:type
element is appropriately named). The arrows on the diagram point to a term’s superclass.

In the Dictionary, a FirstName is a type of Name , which is a type of textual memorandum (Memo) that
can be recorded about a resource. A Memo is a subtype of Entry, one of the eleven basic classes in the
taxonomy. The Memo class is (called) a base category because it is an immediate subtype of a base class.
Other base category classes within Entry include Quantity (for numeric data elements); Time (for time
and date data elements); and QualifiedEntry (for names prefixed by a modifier term). The taxonomy for
a Witness is less trivial: it is a subclass of both ThirdParty and PersonalRole. A ThirdParty is a
subclass of Party, a subtype of ActorRole whose superclass is the Actor class. A PersonalRole is a
subclass of a Person, also a subclass of the Actor class.

The objective of a taxonomy is to facilitate the definition and enforcement of business rules applicable to
document content, minimizing programming required as a taxonomy is improved or corrected – this is
crucial to standards development. For instance, because a Witness is a subtype of Person, then it may
have a FirstName as any Person object can. Additionally, wherever a schema allows a Witness to be
used, any of its subclasses may equally be used; for instance, a HostileWitness class could be inserted
into the taxonomy as a subclass of Witness, and used without changing much if any existing software.

Modern programming systems require multiple class inheritance to correctly model the information that
they manipulate. Because RDF Schema accommodates multiple inheritance, a facility not available with
XML Schema, it is therefore a better foundation for a (distributed) metadata repository than XML
Schema that includes both normative metadata plus organization-specific metadata.

7

Multiple Schema Definitions
DTD elements for base classes and datatypes
XML Schema elements for base category classes (see xsi:type)
RDF Schema elements for specific terms (see name attribute)
<Actor xsi:type=‘Person’ name=‘Man’>
<Document xsi:type=‘CourtDocument’ name=‘Pleading’>
<Entry xsi:type=‘Memo’ name=‘FirstName’>
<Event xsi:type=‘Conveyed’ name=‘Contracted’>
<Location xsi:type=‘Facility’ name=‘Courthouse’>
<Product xsi:type=‘Furnishing’ name=‘Chair’>
<Property xsi:type=‘RealEstate’ name=‘Condominium’>
<Service xsi:type=‘PublicAdministration’ name=‘FireProtection’>
<Topic xsi:type=‘Finances’ name=‘BusinessFinances’>

DTD general content model for base classes
XML Schema content model for base categories + translations
RDF Schema detailed content models + translations

The primary function of document schemas is to support validatio n of the content of XML documents.
The ultimate aim of validation is to ensure that a document contains XML elements that are named in
stylesheets and other software later processing the document. Our approach creates multiple stages for
validation corresponding to the schema used. The first stage syntactically inspects the document to ensure
it validates against a DTD or XML Schema containing definitions of broadly-defined data types and
broadly-defined content models – in other words, that contains definitions of the base classes and base
categories established by one’s taxonomy. For instance, the Data Consortium’s DTD and XML Schema
contains only 160 elements, and these two schema are used to validate all documents encoded using the
namespace. (Approximately 160 elements represent the 10 base cla sses defined in the Dictionary, 140
base categories, and 10 datatypes).

The second stage of validation compares the content of a document against business rule metadata stored
in an RDFS repository. The business rules are expressed using RDF Schema elements, Agent Markup
Language elements (DAML+OIL), and elements that pre-define an ECMA programming environment
for specific documents. The content model for each term is defined by both RDF Schema’s “Property”
element and by our “ECMASlot” element. It is also technically feasible to generate a document-specific
DTD or XML Schema directly from information in the RDF Schema.

A noteworthy advantage of this approach is that – since base classes and categories are anticipated to be
relatively stable – the need to change the DTD and XML Schema is equally anticipated to be very small.
Because XSL-T and CSS stylesheets are developed using elements defined by these two schema – not by
an RDF Schema – then these stylesheets would need that much less maintenance as the business object
model is refined over time. Higher-level software, such as a generic Document Management System, can
directly identify elements that represent a document, without needing to have the set of names for
documents be recorded within it.

Software that requires a more detailed selection capability is accommodated by isA() processing. This is
a highly important facility in a processing model that includes multiple, dynamic, typing as provided by
the RDF: a given element’s type is indicated by (a) its element name (b) its xsi:type attribute value (c) its
name attribute value and (d) its child rdf:type elements. [Note: the Data Consortium’s toolkit, for
performance reasons, redundantly inserts rdf:type elements corresponding to (a) through (c) so that a
single access method is used throughout the toolkit.]

8

Related Activities
Data Consortium Toolkit (Open-source)
à inputs: (dotted-name) HTML, SVG, XFORM, and XScript datastreams
à inputs: (standard XML) Data Consortium, Dublin Core, and IMC datastreams
à executes: client-submitted ECMA Script programs
à outputs: semantic validation messages (business rule enforcement)
à outputs: DCN datastreams and XScript datastreams

LEXML Dictionary
à Fraternal effort with US-based LegalXML’s Dictionary Workgroup
à Focus on multiple national jurisdictions

RDF Schema Dictionaries
à DARPA Dictionary for Web Service
à Semantic Web Agreement Group (SWAG): general clearinghouse

The Data Consortium is now developing a CORBA-enabled toolkit which accepts two kinds of input
datastreams. Whenever a datastream is read, an object model is constructed that can be accessed either by
CORBA-enabled Application Program Interfaces (APIs) or through a standard ECMA environment.
These object models are constructed from (a) standard XML elements that are defined by the Data
Consortium’s namespace, by the Dublin Core organization, and by the Internet Mail Consortium (IMC).
The Dublin Core’s namespace includes 14 elements that have been designed by library scientists which
generically describe electronic resources. The IMC’s namespace includes Electronic Business Card
(vCard) elements that describe e-mail recipients. In the future, other namespaces can be accommodated
by the Toolkit. The second type of input accepted by the Toolkit are datastreams that use the ‘dotted-
name’ variation for XML element names, which is called “XScript” by the Data Consortium. And
HTML, SVG, and XFORM datastreams using the ‘dotted-name’ themselves are also a valid input for the
Toolkit.

RDF Schema-based dictionaries are being developed for the US legal community by LegalXML, and for
the European legal community by LexML, our fraternal organizatio n led by Murk Muller.

If your organization would like to be involved with the ongoing development of this software,
please do contact me or Murk Muller. We would like to bring these products into the public
domain as quickly as possible, so your expert participation (and funding!) would be greatly
appreciated.

